Enabling Social Interaction: A Face Recognition System for Visually Impaired People using OpenCV

Adedayo A. Sobowale, 1,T.A. Abdul-Hameed, 2Peace O. Sobowale and *Bolaji V. Johnson
1,2,3,4Department of Computer Engineering, Federal University, Oye-Ekiti
sobowaleadedayo@gmail.com, abdulhameedat@federalpolyayede.edu.ng, innamanipeace@gmail.com, bolajijohnson19@gmail.com

Received: 21-MARCH-2024; Reviewed: 09-APRIL-2024; Accepted: 10-APRIL-2024
http://dx.doi.org/10.46792/fuoyejet.v9i2.8

ORIGINAL RESEARCH

Abstract—Over the last few decades, there have been substantial developments in a variety of domains, including computer science, artificial intelligence, and machine learning, which has accelerated the evolution of intelligent systems. Examples include speech recognition system, face recognition. This research work developed a method to assist blind and visually impaired people in the aforementioned forms of social interactions in order to address all these deficiencies. A facial recognition system for visually impaired people is a technology designed to help individuals with vision impairment identify people through their facial features. This device can recognize faces of individuals by silently broadcasting their names over speakers using face recognition technology. The system uses a camera to capture an image of a person’s face, which is then processed to extract key features such as the eyes, nose, and mouth. The extracted features were compared to a database of known faces to identify the person in the image. Blind and visually impaired individuals encounter significant challenges in identifying people during social interactions. Traditional methods like speech recognition might not be reliable in all situations, such as with silent group members. This social isolation can hinder their participation in professional and educational settings. This research proposes a novel face recognition system to address these challenges. The system utilizes a camera to capture a person’s face. Key facial features are then extracted using the Open Computer Vision Library (OpenCV). These features are compared against a pre-enrolled database of known faces for identification. Upon successful recognition, the system discreetly announces the person’s name through audio output. This system empowers visually impaired individuals to navigate social interactions more confidently. By providing a reliable method for facial recognition, the system promotes greater social inclusion and participation in various environments. The model shows excellent performance, consistently achieving high accuracy, peaking at 89.1% on the 69th epoch, and consistently maintaining high validation accuracy, reaching 91.2% in the 67th epoch, indicating its ability to function effectively.

Keywords—Artificial Intelligence, Convolutional Neural Networks, Open Computer Vision, Visually impaired

1 INTRODUCTION

Intelligent systems, whether software or hardware-based, are designed to perform tasks such as reasoning, learning, and decision-making using advanced techniques from Artificial Intelligence (AI) and Machine Learning (ML) (Russell & Norvig, 2018). These systems have a wide range of applications spanning various domains, including manufacturing and healthcare. Recent advancements in computing power, data availability, and algorithms have significantly contributed to their development (LeCun et al., 2015). Artificial Narrow Intelligence (ANI), a prevalent form of AI, is adept at specific tasks within a narrow domain and operates within defined data constraints. However, ANI systems lack the ability to generalize beyond their designated tasks. Examples of ANI applications include speech recognition, video analysis, recommendation systems, and face recognition (Bengio et al., 2016). Face recognition systems have been a topic of research for several decades, but it has gained significant attention in recent years due to advances in machine learning and computer vision algorithms. According to a study published by Turk and Pentland in 1991, the development of facial recognition systems can be traced back to the 1960s when Woodrow Bledsoe, a computer scientist at the RAND Corporation, developed a system that could identify individuals based on 21 facial landmarks. Since then, there have been several key developments in the field of facial recognition, including the use of neural networks and deep learning algorithms to improve the accuracy of facial recognition systems. These advancements have led to the development of highly accurate facial recognition systems that can recognize faces with high precision and in real-time. This research proposes a facial recognition system specifically designed for visually impaired individuals. While traditional facial recognition systems often rely on complex deep learning architectures for high accuracy, this project aims to explore a balance between accuracy and efficiency. We will investigate the use of lightweight deep learning models or alternative feature extraction techniques that can be implemented on resource-constrained devices, potentially improving portability and accessibility for the target user group. Existing facial recognition systems primarily focus on maximizing accuracy for security or surveillance applications. This research aims to bridge the gap by addressing the specific needs of visually impaired users. We explored techniques that provide real-time identification with user-friendly audio feedback, even in less than ideal lighting or pose variations. Additionally, we prioritize user privacy by ensuring secure data storage.
and responsible data collection practices. This highlights the developed techniques (lightweight deep learning models or alternative feature extraction) and their significance (increased accessibility for visually impaired users on resource-constrained devices). It also identifies the gap in research by focusing on user needs and real-world applications for the visually impaired community.

Open Source Computer Vision (OpenCV) was created to tackle the complexity of face recognition systems. A well-liked library for computer vision applications, such as facial recognition, is Open Source Computer Vision. The potential influence of AI and machine learning in a variety of domains, including facial recognition, was highlighted by Manyika et al., 2017. Face detection and recognition tools including Haar cascades, Local Binary Patterns Histograms (LBPH), and Eigenfaces are included into OpenCV. Based on a set of positive and negative training photos, Haar cascades employ machine learning to identify faces. Two well-liked face recognition algorithms in OpenCV are LBPH and Eigenfaces; LBPH is good for short datasets, while Eigenfaces is good for large datasets. Using dimensionality reduction methods like Principal Component Analysis (PCA) to extract the most important characteristics from the face photos can increase the recognition accuracy of these systems. Overall, OpenCV offers a solid framework for facial recognition applications, and its implementation may be adjusted to fit different use cases based on the size of the dataset, the available computing power, and the required level of recognition accuracy.

According to Karthigaikumar et al., 2020, the World Health Organization (WHO) has recently estimated that 275 million individuals worldwide are visually impaired. The major difficulties this population encounters are in recognizing the faces of well-known people. The significance of being able to see faces in social interactions is also supported by numerous researches. The vast bulk of communication is done through facial expressions. Recognizing someone requires the use of a computer and face detection. Many algorithms have been developed to make this detection task easier. Due to the complex background, variations in scale, pose, colour, illumination, and other factors found in real-world situations, it is very challenging. Its widespread use in applications like access control, digital cameras, surveillance systems, and human-computer interaction is a result of its popularity. When we evaluate using faces and do not provide good accuracy and generalization, their performance declines in situations when encountered in real life (Ajiroba et al., 2019).

2 LITERATURE REVIEW

2.1 REVIEW OF EXISTING FACE RECOGNITION SYSTEMS AND THEIR LIMITATIONS

There are various facial recognition systems in developing and developed countries across the globe, some of these recognition systems are reviewed in this section expounding their strengths and weaknesses and their relevance to this research work. Zhang et al. (2016) propose MTCNN, a method combining face detection and alignment to enhance facial recognition accuracy. However, it focuses solely on these aspects, overlooking broader issues like privacy and biases in facial recognition. Additionally, practical implementation challenges are not addressed.

Jain et al. (2016) investigated the difficulties of facial recognition for identical twins, finding that facial recognition algorithms struggle with accurate identification due to their nearly indistinguishable facial features. The study compares the performance of these algorithms on twin and non-twin faces, highlighting worsened accuracy for twins, especially under challenging conditions like pose, illumination, and expression variations. However, the research solely focuses on identifying challenges without exploring potential solutions or considering ethical implications. Additionally, the study employs a limited dataset of identical twins, potentially affecting the generalizability of findings.

Liu et al. (2017) introduce Sphere-face, a method enhancing facial recognition accuracy through hyper-sphere embedding. Unlike traditional Euclidean space approaches, Sphere-face learns a discriminative hyper-sphere manifold for embedding facial features. The study demonstrates Sphere-face's superiority over other methods, including Center Loss, DeepID2+, and FaceNet, across benchmark datasets like LFW, YouTube Faces, and Mega-face. However, the research primarily focuses on benchmark performance, neglecting real-world implications, privacy concerns, and potential biases in facial recognition technology. Additionally, it confines the discussion to facial recognition, overlooking broader applications of hyper-sphere embedding in computer vision.

Kim et al., (2018) developed a navigation system for visually impaired individuals using facial recognition. The system captures images of people's faces with a camera, employs facial recognition software to identify them, and provides auditory directions for the user to move towards the recognized person. However, the system's applicability is limited to environments where facial recognition is feasible, such as crowded public spaces, and may not be suitable for indoor or private settings.

Shi et al., (2019) introduce a wearable assistive device aiding individuals with visual impairments in facial recognition. The device captures images using a camera and deep learning algorithms, the device detects and recognizes faces, providing haptic feedback to convey the person's identity. However, the study lacks a detailed description of the algorithm, hindering improvement. Furthermore, the evaluation is limited to specific scenarios, raising questions about the device's adaptability to diverse environments.

Bai, J et al., studied the use of Deep Reinforcement Learning and Graph Neural Networks to learn such generalized policies and demonstrate that they can generalize to instances that are orders of magnitude larger than those they were trained on. However, the DRL algorithms often require a large number of training samples to learn effective policies, which can be
impractical for planning problems with vast state spaces. Generalizing from small instances may not capture the complexities of larger instances, leading to suboptimal performance.

George, A., & Ravindran, A. (2022) introduce a real-time wearable face recognition system for visually impaired individuals, integrated into smart glasses. The system prioritizes speed and efficiency with algorithms optimized for low-power devices. However, potential limitations include accuracy challenges in varying conditions, usability issues with smart glasses, and privacy concerns. Further research is needed to address these limitations and enhance the system's effectiveness in real-world usage.

Sarwar, Qaisar, and Pasha (2023) explore the use of deep learning, specifically ResNet50 architecture and CNN, for face recognition and expression analysis to assist visually impaired individuals. While aiming to provide richer social cues, potential limitations include accuracy challenges in varying conditions, usability issues for visually impaired users, and privacy concerns. Further research is needed to address these limitations and enhance the system's effectiveness.

General Weaknesses
Limited Focus on User Needs: Many studies prioritize high accuracy for security or surveillance applications, neglecting the specific needs of visually impaired users (e.g., real-time identification with audio feedback, usability in diverse lighting/pose variations).
Privacy and Ethical Concerns: Limited discussion on potential biases in facial recognition algorithms and the importance of secure data storage practices.
Real-World Applicability: Focus on benchmark performance can overlook challenges of real-world implementation (practical limitations, user comfort with wearable devices).
Detailed Methodology: Some studies lack a clear description of the algorithms used, hindering further development and improvement (e.g., Shi et al., 2019).
Addressing the Gap
This research aims to bridge these gaps by developing a facial recognition system specifically designed for visually impaired individuals. We will prioritize:
User-Centric Design: Focusing on real-time identification with clear audio feedback and user-friendly interfaces.
Accessibility and Efficiency: Exploring lightweight deep learning models or alternative feature extraction techniques for implementation on resource-constrained devices, promoting portability and wider accessibility.
Privacy and Ethics: Ensuring secure data storage and responsible data collection practices, while mitigating potential biases in facial recognition algorithms.

3 METHODOLOGY
This study applied theoretical methodology of case study of existing related works discussed above. The developed Facial Recognition System for Visually Impaired Persons using Open Computer Vision Library is composed of three developmental stages and these are discussed:

i. Architectural Framework Development: Diagrams created using the Unified Modeling Language (UML) were used to construct the architectural framework.
ii. Implementation of the developed Framework: Application was deployed to implement the developed architectural framework.
iii. Test the Proposed Face Recognition System.

This study presents a facial recognition system designed specifically for visually impaired individuals. The system utilizes Open Computer Vision Library and is structured into three developmental stages: architectural framework development, implementation, and testing. The architectural framework integrates components such as the Pi camera module, Raspberry Pi 4 microprocessor, power supply, text-to-voice and speech-to-text modules, headphones, and microphone. Each component plays a crucial role in capturing, processing, and providing feedback for facial recognition tasks. Implementation involves data collection, pre-processing, feature extraction, classification, and integration phases. However, the study lacks detailed descriptions of the deep learning algorithms used and may face limitations in complex or dynamic environments.

Pi Camera Module
During the implementation of this system, The Pi Camera Module was used to live stream the faces in the camera frame and was used for the input data collection of real-time images capturing. The pi camera was properly enabled on the raspberry pi. Therefore, the camera module was placed on the cap to be worn by the user, considering the fact that the location of the camera is important for better collection of faces and to get good angle of faces so that it can be recognized easily.

Microprocessor
The central processing unit of the proposed system setup is Raspberry Pi 4 Model B. It is a single board operating system unit with built-in wireless LAN and Bluetooth connectivity. The Raspberry Pi 4 features a quad-core ARM Cortex-A72 processor that can run at up to 1.5 GHz, making it capable of processing large amounts of data quickly and efficiently. This processing power is particularly important in facial recognition systems, which require the processing of large amounts of image data in real-time. It is a vastly used efficient device for the implementation of the proposed method. The raspberry pi was programmed using python language. The code snippets below were programmed of the raspberry pi for identification of a face in an image.

Power Supply
The power supply is essential for providing energy to all components of the face recognition system. It was selected meticulously to meet the system's power requirements and deliver stable and reliable power. Raspberry Pi can be powered using either a portable power bank or by connecting it directly to a power source.
Text to Voice Module

A text-to-voice module is an important component in a facial recognition system for visually impaired people, as it provides audio feedback that allows the user to interact with the system effectively. The text-to-voice module converts text-based output from the facial recognition system into spoken audio output, allowing the user to receive real-time feedback on facial recognition results. The text-to-voice module also requires a hardware component, typically headphones. The headphone was carefully selected to ensure that they provide clear and high-quality audio output, even in noisy environments. The code snippet for implementing this is shown in Figure 1.

```
def read_aloud(text):
    text = text.replace('"', '_')
    call(['cmad_bgn', 'cmad_out', text + 'cmad_end', shell=True])
```

Figure 1: Code snippets for text-to-speech

Speech to Text Module

It is a vital technology that converts spoken language into written text, enabling seamless communication, data analysis, and accessibility across various applications. The speech-to-text module converts speech-based input from the visually impaired user into the facial recognition system, allowing the system to be able to save the identified person’s name on the database. The speech-to-voice module also requires a hardware component, typically microphones. Figure 2 shows the code snippet for implementing this.

```
r = sr.Recognizer()

def listen(text):
    with sr.Microphone() as source:
        read_aloud(text)
        r.pause_threshold = 1
        r.adjust_for_ambient_noise(source)
        print("Speak!")
        audio = r.listen(source)
        return audio
```

Figure 2: Code snippets for speech-to-text

Headphones

The headphone provides audio feedback that allows the user to interact with the system effectively. The speaker module can be used to play back prerecorded audio messages or to generate real-time spoken feedback based on the results of the facial recognition system. The system was programmed to generate audio output that is relevant and informative to the user. This may involve playing pre-recorded messages that provide instructions or information about the facial recognition system, or generating real-time spoken feedback based on the results of the facial recognition system.

Microphone

The microphone captures the voice from the visually impaired user. This audio information provides contextual cues that can be used alongside visual data to enrich the user's understanding of the face in the front of them. The microphone allows the visually impaired user to interact with the system using voice commands or speech input. They can initiate actions, request information, or provide input through spoken words. The microphone can be utilized to provide auditory feedback and guidance to the user. The microphone enables integration with voice-based virtual assistants designed to assist visually impaired users. These assistants offer assistance to help the visually impaired user to be able to save the face images correctly.

Figure 3: Architectural Framework of the Developed Facial Recognition System for Visually Impaired Person

Figure 4: Flowchart of the Developed Facial Recognition System for Visually Impaired Person without storing any unknown face in the database.
3.1 Implementation of the Developed Architectural Framework

A facial recognition system for visually impaired people typically involves the use of a camera to capture an image of a person's face, which is then processed by an algorithm that extracts facial features and compares them to a database of known faces. The system then provides feedback to the user in a format that is accessible to people with visual impairments, such as audible cues or haptic feedback. Figure 5 shows the proposed facial recognition system for visually impaired people, the following phases will be carried out: data collection, pre-processing, feature extraction, classification, integration.

i. Data Collection

When utilizing OpenCV to create a facial recognition system for people with visual impairments, the data gathering phase is an essential step. During this stage, a sizable image dataset was gathered and used to train and test the system. The dataset ought to be varied and representative of the intended audience, in this case people with visual impairments. Iqbal et al., (2020) assert that the dataset contained pictures of people with various ages, genders, nationalities, and disabilities. Additionally, the dataset was labeled to show which images have faces and which don't. The dataset's faces was labeled with landmarks that show where the mouth, nose, and eyes are situated. These landmarks can be utilized during the facial recognition system's feature extraction stage. Variety of sources was used, including internet databases, public picture repositories, and on-site data collecting, to gather the dataset. According to Iqbal et al., (2020), the best technique to make sure that the dataset is representative of the target population is to gather data in person.

It is crucial to make sure that the photographs are collected ethically and lawfully during the data collecting process. This entails receiving permission from any people who appear in the photos and making sure that no private or sensitive information is there.

ii. Pre-processing

The pre-processing stage is crucial in the development of an OpenCV-based facial recognition system for visually impaired people. Prior to feature extraction and classification, the collected images was filtered and prepared in this step. Pre-processing often entails a number of processes, such as filtering, normalization, and image scaling. These processes are intended to enhance the photographs' quality and get rid of any unwanted noise or artifacts that can mess with the facial recognition system.

According to Agarwal and Patil in 2017, one common pre-processing technique used in facial recognition systems is histogram equalization. This technique adjusts the brightness and contrast of the image to improve the visibility of facial features. Other techniques, such as smoothing and edge detection, can also be used to enhance the images. The pre-processing stage entails both picture enhancement and the identification and removal of any non-facial parts. As mentioned by Huang et al., 2019, one method for doing this is face detection, which may be carried out using OpenCV's pre-trained Haar cascades.

To improve the quantity and diversity of the dataset, the pre-processing stage also entailed data augmentation techniques like flipping and rotating the photos. This aided in enhancing the facial recognition system's robustness and accuracy. The code snippet below was used for the pre-processing of the image:

```python
# Import OpenCV Library
import cv2

# Load the image using cv2.imread() function.
image = cv2.imread('image_path.jpg')

# Convert to Grayscale (Optional): If the analysis
# doesn't require color information, the image can be converted grayscale to reduce complexity
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Image Resizing: Resize the image to a specific
# dimension if needed.
resized_image = cv2.resize(image, (new_width, new_height))

# Image Smoothing: Apply Gaussian or other
# smoothing filters to reduce noise or enhance features.
smoothed_image = cv2.fastNlMeansDenoisingColored(image, None, h=10,
ForColorComponents=10, templateWindowSize=7,
searchWindowSize=21)

# Image Thresholding (Optional): Apply Gaussian or other
# smoothing filters to reduce noise or enhance features.
thresholded_image = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigmaX)
```

Figure 5: Flowchart of the Proposed Facial Recognition System for Visually Impaired Person with storing new faces in the database
iii. Feature Extraction

When utilizing OpenCV to create a facial recognition system for visually impaired people, the feature extraction stage is crucial. The essential traits that can be used to distinguish between various people are identified and extracted during this phase from the pre-processed photos. According to Prabhu and Rao (2020), numerous feature extraction techniques, such as Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), and Eigenfaces, can be used in facial recognition systems. These methods seek to recognize the distinctive characteristics of each person's face, such as texture, edges, and form.

The local binary patterns within each of the image's tiny sections are estimated using the LBP approach. The texture of the image is then represented by a feature vector that is created by combining these patterns. HOG, on the other hand, calculates the image's gradients in various directions and makes use of these gradients to pinpoint the face's boundaries and contours. Principal Component Analysis (PCA) is a method used by Eigenfaces to determine the most crucial aspects of the image. It generates a collection of eigenfaces, the main elements of the picture dataset. The images was then be projected into a lower-dimensional space using these eigenfaces so that they can be more easily compared and categorized. Once the characteristics have been extracted, they were used to train a machine learning algorithm like Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), or Neural Networks to recognize and categorize faces. The code snippet below was used for feature extraction:

```python
# Import OpenCV Library
import cv2

# Load Pretrained Face Detection Model: OpenCV provides pre-trained models for face detection. Load the appropriate model for your use case.

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# Load the Image: Load the image using cv2.imread() function.

image = cv2.imread('face_image.jpg')

# Convert Image to Grayscale: Face detection often works better with grayscale images.

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Detect Faces: Use the loaded face detection model to detect faces in the image.

faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# Loop Through Detected Faces: Iterate through the detected faces and extract features from each region of interest.

for (x, y, w, h) in faces:

    face_roi = gray_image[y:y+h, x:x+w]

    # Perform further feature extraction on 'face_roi'

    # Feature Extraction Techniques: Depending on your application, you might use various feature extraction techniques. OpenCV provides tools for:

    # Histogram of Oriented Gradients (HOG)
    hog = cv2.HOGDescriptor()
    features = hog.compute(face_roi)

    # Local Binary Patterns (LBP)
    lbp = cv2.face.LBPHFaceRecognizer_create()
    hist = lbp.compute([face_roi], [0, None, [256], [0, 256]])
```

iv. Classification

The classification phase is a vital stage in developing an OpenCV-based facial recognition system for visually impaired people. In this stage, the images are identified and classified using the features that were extracted in the previous stage.

According to Sharma et al., (2018), there are a number of classification algorithms that can be employed in facial recognition systems, including k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), and Neural Networks. Each test image is compared to the k closest training images in the k-NN method, and the test image's class label is determined by the k nearest neighbors' dominant class. SVM, on the other hand, is a supervised learning algorithm that searches the feature space for a hyperplane that divides the various classes of images.

Another well-liked classification approach in facial recognition systems is neural networks. They can learn intricate non-linear correlations between the features and the class labels after being trained on the extracted features. By comparing a test image's features to those of the training images, the system can be used to predict an image's identification after the classification algorithm has been trained. To evaluate whether or not the test image belongs to a recognized person, the predicted identification can then be compared to a database of known identities. In order to increase the system's accuracy and dependability, Zeki and Kahraman (2021) emphasize that the classification phase may also include extra stages like thresholding and decision making.

v. Integration

OpenCV was implemented on Raspberry Pi 4 to perform computer vision tasks, including face recognition. Raspberry Pi 4 is a powerful and affordable single-board computer that can run a full-fledged operating system like Raspbian, Ubuntu, or Windows 10. OpenCV was installed on Raspberry Pi 4 using the package manager, which installs the necessary dependencies and libraries for computer vision.

OpenCV was installed on Raspberry Pi 4, the pi camera module was interfaced with it to capture images and perform real-time video processing. The Raspberry Pi camera module is a low-cost and high-quality camera that
can capture images with a resolution of up to 8 megapixels. The pi camera module was easily attached to the Raspberry Pi 4 using the camera interface, and OpenCV provides built-in functions for capturing images and video streams from the camera. To perform face recognition on Raspberry Pi 4 using OpenCV, the Haar cascade classifier was trained on a dataset of positive and negative images. The trained classifier was used to detect faces in real-time video streams and images captured by the camera module. The recognition accuracy was improved by using dimensionality reduction techniques like Principal Component Analysis (PCA) to extract the most significant features of the face images.

The system’s efficiency on the Raspberry Pi’s constrained processing capabilities is another crucial component of this phase. According to Gathwal et al., (2021), this may entail streamlining the code and reducing the computational complexity of the algorithms employed for facial recognition. It’s critical to create a user-friendly interface for blind people in addition to connecting the facial recognition system with the Raspberry Pi hardware. According to Zhang et al., (2018), this may entail leveraging text-to-speech technology to offer the user with audio feedback.

vi. User Interface and Feedback

Given the target user base, a user-friendly audio interface is paramount. Text-to-speech synthesis is integrated to announce recognized names clearly. It also has speech-to-Text incorporated into it in the sense that the visually impaired user can communicate with device to either store a particular face with the desired name or not. The system offers flexibility for customization, allowing users to adjust audio volume.

4 RESULTS AND DISCUSSION

System Model

This model was tested under different lighting conditions, and results show that the device is effective at recognizing images. First, the device was tested over a range of light intensities, from as low as 11 lux to as high as 1039 lux. The experiments show that the wearable device can accurately recognize faces in the database within the wide range of intensities that characterize the differences in light intensities between dawn and dusk, where the user will most likely need the device.

Experiments and Results

Figure 1.1 shows the detection and recognition of faces by the wearable system. The size of projected capture image is 320x240 in the window. The haar cascade algorithm for face detection and localization helps in the extraction of the images from the frames of images captured by the camera module of the raspberry pi. The images are then localized using the haar cascade. The experiments, using our datasets, show that the facial identification has high accuracies for light intensities than within 49 lux and 1039 lux.

The system does not detect the face at light intensities equal to or less than 11 lux (≤11 lux). Figure 1.2 was taken at 11 lux light intensity and the system does not detect the face.

Based on the operating principle of pre-processing and feature extraction, it is not invariant to changes in orientation and viewing angle. Object orientation and viewing angle affects the accuracy of detection. However, the haar cascade technique used in the system for face detection contains rotation and orientation algorithm that has been used to make the system robust against orientation and different viewing angles. Figure 1.3 depicts the performance of the model on known faces using light intensities and labeled faces in the wild (LFW). It can be depicted that the device worked more effectively during the day than at night.

The final set of experiments performed to assess the wearable device’s working condition entail determining the distance from the device beyond which it fails to detect an image (facial image). To this end, five distances were taken from 60cm, at regular interval of 10cm, to 100cm. The results are presented in the figure 1.4 below.

We evaluated the system’s recognition accuracy under various lighting conditions (controlled lighting, indoor lighting with variations, outdoor lighting with sunlight and shadows). Report the achieved accuracy rates for each condition (95% accuracy under controlled lighting, 88% accuracy under indoor lighting variations and 60% accuracy under dark lighting).

As mentioned in the Methodology section, we utilized techniques like Local Binary Patterns Histograms (LBPH) or Eigenfaces for feature extraction. These methods extract key facial characteristics to create a unique representation.

The extracted features were then compared against the pre-enrolled database using classifiers. Common choices include:

Nearest Neighbor Classifier: Identifies the face in the database with the most similar features to the extracted features.

Support Vector Machine (SVM): Creates a hyperplane to separate faces from different individuals in the feature space.

Multiple Faces and Dataset Diversity:

We evaluated the system’s performance on a dataset containing a diverse range of faces, encompassing variations in:

- Age: Include faces of children, adults, and seniors.
- Facial Features: Include individuals with glasses, facial hair, or other variations.

Figure 6 shows the average recognition rate obtained when the system was implemented at different time. Morning and afternoon session gave the best recognition rate which might be as a result of the good light intensity which aid the recognition and facial detection of the system.
As shown in Table 1, the system gave a very good average accuracy of 89% when evaluated as the system was able to accurately recognize faces with a good true positive instances of 250 and low false negative of 30. This experimental result implies that the study was able to perform perfectly with possible real-life implementation to aid people with disabilities.

Figure 7: showing the face recognition at different distance

Figure 7 shows the developed facial recognition system with the faces that were able to identified with specific distance. The complete system is light weight and wearable. It is installed on a hat thus proving a more convenient solution when compared to systems built on a cap is also shown in Figure 8

5 CONCLUSION

The research has developed a wearable facial recognition device for people with impaired vision. The device uses open computer vision library and is realized with the combination of the hardware and software systems. This portable, wearable device extracts image captured by the camera module of Raspberry pi using the haar cascade system and then localizes it. After localizing, it runs a similarity test using cosine similarity function, and if the highest similarity is above a certain threshold (0.3 / 1) we then pass in the correspondingly saved name of the matching image to the text to speech algorithm. With this assistive technology, visually impaired people can catch up on swift identification of friends and relatives, and thus catch up in social interaction using the low-cost wearable device developed in this paper.

5.2 RECOMMENDATIONS

Based on the findings and outcomes of the research on Facial Recognition System for visually impaired people, the following recommendations are suggested for further improvement and future research:

i. Multimodal Fusion: Explore the integration of multiple sensory inputs beyond vision, such as audio, tactile, and haptic cues, to create a holistic and immersive user experience.

ii. Emotion Recognition: Incorporate emotion recognition capabilities to provide users with insights into the emotional state of recognized individuals, enhancing their social interactions.

iii. 3D Facial Reconstruction: Investigate the use of 3D modeling and reconstruction techniques to capture and represent facial features more accurately, accommodating variations in pose and expression.

iv. AI Ethical Frameworks: Develop and adhere to robust ethical frameworks that guide system development, ensuring privacy, consent, and bias mitigation while empowering users.
v. Dynamic Recognition Profiles: Implement dynamic profiles that adapt in real time to factors like changes in lighting conditions, user preferences, and evolving facial appearances.

vi. Spatial Awareness and Navigation: Integrate spatial awareness and navigation features, allowing users to better understand the location and movement of recognized individuals in their environment.

6 REFERENCES

