Development of Embedded Control for a Repetitive Pick and Placed Robotic Arm

  • Olalekan Ogunbiyi Electrical and Computer Engineering Department, Kwara State University, Malete, Nigeria.
  • Taiwo O. Idowu Department of Electrical and Computer Engineering, Faculty of Engineering and Technology, Kwara State University, PMB 1530, Ilorin, Nigeria
  • Lambe M. Adesina Department of Electrical and Computer Engineering, Faculty of Engineering and Technology, Kwara State University, PMB 1530, Ilorin, Nigeria.
Keywords: Microcontroller, Manipulator, Robot, Servomotor


Manual execution of tasks is usually strenuous and exhaustive, some tasks may be repetitive in nature such that it requires full concentration. Nowadays, the integration of robotics into commercial and industrial activities to perform repetitive, dangerous, and difficult is becoming a norm. This work focuses on the implementation of a robotic arm. The robotic arm was designed to have six degrees of freedom. The control circuit includes an embedded Atmega328P microcontroller interfaced with servomotors and other glue electronic components such as sensors and buttons. The system is structured and programmed to operate automatically, performing a repetitive routine. The rotation and orientation of the device were tuned by sending required pulse width modulation (PMW) signals to different servomotors, such that they rotate as desired. The system employs six potentiometers in varying the duty cycle generated by the microcontroller. The system is structured such that three servomotors manipulate the motion of the body, the shoulder, the arm elbow, and the base. Manipulations of the end effector were also carried out by another three servomotors, each one controlling the gripper pitch, the movement of gripper spin, and that of the gripper itself. The constructed robotic arm gives a good response when tested for repetitive picking of objects. A similar acceptable performance was repeated in the autonomous lifting and dropping of objects items.


Adiputra, R. F., & Setiawan, F. B. (2017). Robot arm controlled by muscle tension based on electromyography and PIC18F4550. Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, 37–41.

Aishwarya, D., Mayuresh, M., & Virushali, D. (2016). Haptic Arm Robot. International Journal of Advanced Research in Electronics and Communication Engineering, 5, 1438–1440.

Ashutosh, P., & Rajiv, R. (2013). Robotic Arm Control Through Human Arm Movement Using Accelerometers. Thesis. Electronics and Instrumentation Engineering Department; National Institute Of Technology.

Bhanu, P. S. B., Gokul, S. A., Rama, K., Sastry, A. S. C. S., & Sowmya, B. G. (2012). Design and Implementation of a Robotic Arm Based on Haptic Technology. International Journal of Engineering Research and Applications, 2.

Dandago, K. K., Mohammed, A., Ubadike, O. C., Zango, M. S., Hassan, A., Muhammad, M. I., & Yahaya, J. U. (2021). Modelling and Design of State Estimator for a Pick and Place Robotic Arm. FUOYE Journal of Engineering and Technology, 6(4), 375–379. doi: 10.46792/fuoyejet.v6i4.716

Dylan, S., Jason, W., & Nehran, H. R. (2004). Research Paper on Computer Controlled Robot Arm: Faculty of Engineering.

Faravar, A. (2014). Design , Implementation and Control of a Robotic Arm Using PIC 16F877A Microcontroller (Issue February). Eastern Mediterranean University, Gazimağusa, North Cyprus.

Florentinus, B. S., & Ricky, F. A. (2016). Report on Project on Robot Arm Controlled by Muscle Tension Based on Electromyography and PIC18F4550.

Ghadge, K., More, S., Gaikwad, P., & Chillal, S. (2018). Robotic ARM for pick and place application. International Journal of Mechanical Engineering and Technology, 9(1), 125–133. doi: 10.34218/IJMET.9.1.2018.016

Gohil, V. J., Bhagwat, S. D., Raut, A. P., & Nirmal, P. R. (2013). Publication History - Robotics Arm Control Using Haptic Technology. In International Journal of Latest Research in Science and Technology (Vol. 2, Issue 2).

Hanafi, D., Abueejela, Y. M., & Zakaria, M. F. (2013). Wall Follower Autonomous Robot Development Applying Fuzzy Incremental Controller. Intelligent Control and Automation, 04(01), 18–25. doi: 10.4236/ica.2013.41003

Jabir.N.K, M., John, N., Fayas, M., Mohan, M., Sajeev, M., & Safwan, C. N. (2015). Wireless Control of Pick and Place Robotic Arm Using an Android Application. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(4), 2410–2416. doi: 10.15662/ijareeie.2015.0404055.

Khairul, A. B. R. (2009). Report on Pick and Place Robot (Robotic Arm): Faculty of Electrical Engineering. Technical University of Malaysia.

Krishna, R., Sowmya Bala, G., Sastry, A., Bhanu Prakash Sarma, B., Sai Alla, G., Rama Krishna, A., & Professor, A. (2012). Design And Implementation Of A Robotic Arm Based On Haptic Technology. International Journal of Engineering Research and Applications (IJERA), 2(3), 3098–3103.

Liu, W., Luo, X., Zhang, J., Niu, D., Deng, J., Sun, W., & Kang, J. (2022). Review on control systems and control strategies for excavators. Journal of Physics: Conference Series, 2301(1).

Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., & He, B. (2016). Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks. Nature Publishing Group, November, 1–15. doi: 10.1038/srep38565

Ndwiga, N. K. (2018). Design and Construction of A Microcontroller- Based Five Degree of Freedom Robotic Arm Using Servo Motors. Kenyatta University.

Olawale, J., Oludele, A., Ayodele, A., & Miko Alejandro, N. (2007). Development of a Microcontroller Based Robotic Arm. Proceedings of the 2007 Computer Science and IT Education Conference Development, January 2007, 9.

Olugboji, O. A., Jiya, J. Y., & Ogwuche, D. I. (2019). Prototyping of a Robotic Fire Vehicle Using Radio Frequency Technology. FUOYE Journal of Engineering and Technology, 4(1), 17–21. doi: 10.46792/fuoyejet.v4i1.260

Siti, H. B. I. (2011). Research Report on Design of Robotic Arm Controller Using MATLAB. Technical University of Malaysia.