Modeling of a Greenhouse Climatic Conditions Control System with PID Controller for Plant Growth Optimization

  • Theddeus T. Akano Department of Mechanical Engineering, University of Botswana, Gaborone
  • Olumuyiwa S. Asaolu Systems Engineering, UNILAG
Keywords: Greenhouse, PID Controller, Temperature, Humidity

Abstract

In modern agriculture, our focus is on optimising crop cultivation, particularly in greenhouses, to enhance productivity and resource efficiency. This paper investigates the pivotal role of temperature and humidity control in greenhouses for optimal plant growth. Our study employs a Matlab/Simulink-designed system for continuous monitoring, analysis, and real-time adjustments, connecting with various actuators and integrating external data. Results show the system efficiently corrects variations, ensuring temperature and humidity return to set points of 25°C and 60% respectively. This underscores the transformative potential of the control system in revolutionizing agriculture for increased efficiency and sustainability.

Author Biography

Theddeus T. Akano, Department of Mechanical Engineering, University of Botswana, Gaborone
Senior Lecturer

References

Abba, A. M., Karataev, T., Thomas, S., Ali, A. M., Yau, I., & Mikail, S. A. (2022). Optimal PID controller tuning for DC motor speed control using smell agent optimization algorithm. FUOYE Journal of Engineering and Technology, 7(1), 23-27. https://doi.org/10.46792/fuoyejet.v7i1.740.

Adegbola, Oluwole A., Ebenezer K. Ojo, and Oluwagbemiga D. Aborisade. 2022. ‘A Review on Optimal Temperature Control of Milk Pasteurization Using Extremum Seeking Based Proportional Integral Derivative Controller’. FUOYE Journal of Engineering and Technology 7(1). https://doi.org/10.46792/fuoyejet.v7i1.754.

Ahamed, M. S., Sultan, M., Monfet, D., Rahman, M. S., Zhang, Y., Zahid, A., Bilal, M., Ahsan, T. M. A., & Achour, Y. (2023). A critical review on efficient thermal environment controls in indoor vertical farming. Journal of Cleaner Production, 425, Article 138923. https://doi.org/10.1016/j.jclepro.2023.138923.

Arruda, L. V., Swiech, M. C. S., Delgado, M. R. B., & Neves-Jr, F. (2008). PID control of MIMO process based on rank niching genetic algorithm. Applied Intelligence, 29(3), 290-305. https://doi.org/10.1007/s10489-007-0095-6, 2008.

Åström, K. J., & Wittenmark, B. (2013). Adaptive control. Courier Corporation.

Chang, W. D. (2007). A multi-crossover genetic approach to multivariable PID controllers tuning. Expert systems with applications, 33(3), 620-626. https://doi.org/10.1016/j.eswa.2006.06.003.

Cui, W., & Wang, X. D. (2013). Study on the fuzzy expert system of cucumber planting temperature humidity control in greenhouse. Applied Mechanics and Materials, 336, 820–825. 10.4028/www.scientific.net/AMM.336-338.820.

Ding, J.-T., Tu, H.-Y., Zang, Z.-L., Huang, M., & Zhou, S.-J. (2018). Precise control and prediction of the greenhouse growth environment of Dendrobium candidum. Computers and Electronics in Agriculture, 151, 453–459. https://doi.org/10.1016/j.compag.2018.06.037.

DiStefano, J. J., Stubberud, A. R., & Williams, I. J. (2014). Feedback and control systems, Schaum's Outline of Feedback and Control Systems. 2nd ed. New York: McGraw-Hill Education.

Dorf, R. C., & Bishop, R. H. (2022). Modern Control Systems, 14th Pearson. Santa Monica.

Faouzi, D., & Bibi-Triki, N. (2016). Modeling, Simulation and Optimization of agricultural greenhouse microclimate by the application of artificial intelligence and/or fuzzy logic. https://doi.org/10.20944/preprints201607.0064.v1.

Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Tignor, M. E., Wilson, S. B., & McMahon, M. (2010). Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture, 70(1), 105–116. https://doi.org/10.1016/j.compag.2009.09.010.

Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2015). Feedback control of dynamic systems (Vol. 33). London: Pearson.

Gruda, N., & Tanny, J. (2014). Protected crops. Horticulture: Plants for People and Places, Volume 1: Production Horticulture, 327–405. https://doi.org/10.1007/978-94-017-8578-5_10.

Hadidi, A., Saba, D., & Sahli, Y. (2021). The role of artificial neuron networks in intelligent agriculture (case study: greenhouse). Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, 45–67. https://doi.org/10.1007/978-3-030-51920-9_4.

Hamidane, H., El Faiz, S., Guerbaoui, M., Ed-Dahhak, A., Lachhab, A., & Bouchikhi, B. (2021). Constrained discrete model predictive control of a greenhouse system temperature. International Journal of Electrical and Computer Engineering, 11(2),1223. http://doi.org/10.11591/ijece.v11i2.pp1223-1234.

Hamidane, H., Faiz, S. E. L., Rkik, I., El Khayat, M., Guerbaoui, M., Ed-Dahhak, A., & Lachhab, A. (2023). Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2023.04.003.

Javadikia, P., Tabatabaeefar, A., Omid, M., Alimardani, R., & Fathi, M. (2009). Evaluation of intelligent greenhouse climate control system, based fuzzy logic in relation to conventional systems. 2009 International Conference on Artificial Intelligence and Computational Intelligence, 4, 146–150. https://doi.org/10.1109/AICI.2009.494.

Jaworski, Tomasz & Hilszczański, Jacek. (2013). The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. Forest Research Papers. 74. https://doi.org/10.2478/frp-2013-0033.

Maher, A., Kamel, E., Enrico, F., Atif, I., & Abdelkader, M. (2016). An intelligent system for the climate control and energy savings in agricultural greenhouses. Energy Efficiency, 9, 1241–1255. https://doi.org/10.1007/s12053-015-9421-8.

Martins, O. O., Adekunle, A. A., Arowolo, M. O., Uguru-Okorie, D. C., & Bolaji, B. O. (2022). The effect of an evolutionary algorithm's rapid convergence on improving DC motor response using a PID controller. Scientific African, 17, e01327. https://doi.org/10.1016/j.sciaf.2022.e01327

Ogata, K. (2020). Modern control engineering, 5th ed. Prentice Hall.

Outanoute, M., Lachhab, A., Ed-Dahhak, A., Guerbaoui, M., Selmani, A., & Bouchikhi, B. (2016). Synthesis of an Optimal Dynamic Regulator Based on Linear Quadratic Gaussian (LQG) for the Control of the Relative Humidity Under Experimental Greenhouse. International Journal of Electrical & Computer Engineering (2088-8708), 6(5). https://doi.org/10.11591/ijece.v6i5.pp2262-2273.

Pawlowski, A., Sánchez-Molina, J. A., Guzmán, J. L., Rodríguez, F., & Dormido, S. (2017). Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses. Agricultural Water Management, 183, 16–25. https://doi.org/10.1016/j.agwat.2016.08.008.

Piscia, D., Muñoz, P., Panadès, C., & Montero, J. I. (2015). A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115, 129–141. https://doi.org/10.1016/j.compag.2015.05.005.

Putti, F. F., Gabriel Filho, L. R. A., Gabriel, C. P. C., Neto, A. B., Bonini, C. dos S. B., & Dos Reis, A. R. (2017). A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, 288, 124–129. https://doi.org/10.1016/j.mbs.2017.03.005.

Salgado, P., & Cunha, J. B. (2005). Greenhouse climate hierarchical fuzzy modelling. Control Engineering Practice, 13(5), 613–628. https://doi.org/10.1016/j.conengprac.2004.05.007.

Shahzad, K., Sultan, M., Bilal, M., Ashraf, H., Farooq, M., Miyazaki, T., Sajjad, U., Ali, I., & Hussain, M. I. (2021). Experiments on energy-efficient evaporative cooling systems for poultry farm application in Multan (Pakistan). Sustainability, 13(5), 2836. https://doi.org/10.3390/su13052836.

Spellman, F. R., & Stoudt, M. L. (2013). Environmental science: Principles and practices. Rowman & Littlefield.

Subin, M. C., Singh, A., Kalaichelvi, V., Karthikeyan, R., & Periasamy, C. (2020). Design and robustness analysis of intelligent controllers for commercial greenhouse. Mechanical Sciences, 11(2), 299–316. https://doi.org/10.5194/ms-11-299-2020.

Sultan, M., Miyazaki, T., Koyama, S., & Saha, B. B. (2014). Utilization of desiccant air-conditioning system for improvement in greenhouse productivity: A neglected area of research in Pakistan. Int J Environ, 4(1), 1–10.

Sultan, M., Miyazaki, T., Saha, B. B., & Koyama, S. (2016). Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system. Renewable Energy, 86, 785–795. https://doi.org/10.1016/j.renene.2015.09.015.

Sultan, M., Niaz, H., & Miyazaki, T. (2019). Investigation of desiccant and evaporative cooling systems for animal air-conditioning. Low-Temperature Technologies; IntechOpen: London, UK, 21–37. https://doi.org/10.5772/intechopen.88945.

Vanegas-Ayala, S.-C., Barón-Velandia, J., & Leal-Lara, D.-D. (2022). A systematic review of greenhouse humidity prediction and control models using fuzzy inference systems. Advances in Human-Computer Interaction, 2022, 1–16. https://doi.org/10.1155/2022/8483003.

Wang, L., & Wang, B. (2020). Greenhouse microclimate environment adaptive control based on a wireless sensor network. International Journal of Agricultural and Biological Engineering, 13(3), 64–69. https://doi.org/10.25165/j.ijabe.20201303.5027.

Wheeler, T. (2015). Climate change impacts on food systems and implications for climate-compatible food policies. In: Elbehri, A. (ed.) Climate Change and Food Systems: Global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations, Rome, 315-336.

Zhang, S., Guo, Y., Zhao, H., Wang, Y., Chow, D., & Fang, Y. (2020). Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. Journal of Cleaner Production, 274, 122695. https://doi.org/10.1016/j.jclepro.2020.122695.

Published
2023-12-31