Energy saving Chemical Beneficiation Method of Improving Low Grade Nigeria Chromite Ore for Use in Steel Industries

  • Ibrahim K. Ayinla University of Ilorin
  • Alafara A. Baba University of Ilorin
  • Rukayat T. Oyewumi-Musa
  • Bankim C. Tripathy
  • Gold A. Anafi
  • Ranjan K. Dwari
Keywords: Activation energy, Beneficiation, Characterization, Kinetic, Lean ore,

Abstract

This study detailed how direct acid leaching can be used to extract high grade chromite from low grade chromite ore for utilization in the steel industry. The suggested method, which makes use of nitric acid, avoids using traditional pyrometallurgical processes because they use a lot of energy. The leaching procedure is adjusted in accordance with the circumstances that will maximize chromium recovery. In this context, the independent variables are the nitric acid concentration (0.5–4 M), temperature (28–80°C), liquid to solid ratio (L/S) (3–10 mL g–1), and leaching period (10–120 min). The three parameters that affect the leaching process most effectively are, in order, acid concentrations, temperature, and particle sizes. By doing this, 86.7% of the chromite in the lean chromite ore was recovered. Shirking core model examination of the kinetics of leaching reveals that internal diffusion reaction controls the rate of leaching, and the apparent activation energy calculated is 24.8 kJ.mol-1. This approach is successful and relatively inexpensive for chromite beneficiation. The gap is thus filled by the use of all-known inefficient acid dissolution procedures, which are less expensive and could serve as an alternate way of chromite beneficiation for use in iron and steel.

References

Abubakre, O., Muriana, R. and Nwokike, P. (2007). Characterization and beneficiation of Anka chromite ore using magnetic separation process. Journal of minerals and materials characterization and engineering. 2(5): 146-153

Ayinla I.K., Baba A. A., Tripathy B. C., Ghosh M.K., Dwari R. K., Padhy S. K. (2019). Enrichment of a Nigerian chromite ore for metallurgical application by dense medium flotation and magnetic separation. Metallurgical Research and Technology, 116 (324): 2-9

Biermann W. J. and Heinrichs M. (1960). The attack of chromite by sulfuric acid, Cananadian Journal of Chemistry 38: 1449-1456

Chen, G., Wang, J. J. , Wang, X. H., Zheng, S. L., Du, H. and Zhang, Y. (2013). An investigation on the kinetics of chromium dissolution from Philippine chromite ore at high oxygen pressure in KOH sub-molten salt solution, Hydrometallurgy, 139: 46-53.

Chen, M., Shu, . J. F., Mao, H. K., Xie, X. D. and Hemley, R. J. (2003). Natural occurrence and synthesis of two new postspinel polymorphs of chromite, PNAS, 100 (25): 14651- 14662Cicek, T. and Cocen, I. (2002), Applicability of Mozley multigravity separator (MGS) to fine chromite tailings of Turkish chromite concentrating plants. Minerals Engineering, 4: 91-112

Das, G. K., Acharya, V., Anand, S., and Das, R.P. (1995). Acid pressure leaching of nickel- containing chromite overburden in the presence of additives. Hydrometallurgy. 39(1- 3): 117-128

Dey S. and Paul, A. K. (2016). Evaluation of chromate reductive activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 Isolated from Chromite Mine Overburden. Chemosphere. 156: 69-79

Geveci, A., Topkaya, Y and Ayhan, E. (2002). Sulfuric acid leaching of Turkish chromite concentrate. Mineral Engineering 15,(11): 885-896

Hussein, M. K., Kolta, G. A., and Abdel Aal O. (1972). Extraction of chromium from Egyptian chromite ores, Canadian Metallurgical Quarterly 11(3): 481-493

Industry Research Biz (2023) 2023 Global Chromite Ore Market Share, Demand And Swot:2030Outlook, https://www.linkedin.com/pulse/2023-global-chromite-ore-market-

Jagupilla, S. C. , Wazne, M., and Moon, D. H. (2015). Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue. Chemosphere. 136: 95-104

Jiang, M. F., Zhao, Q., Liu, C. J., Shi, P.Y., Zhang, B., Yang, D. P., Saxén, H., and Zevenhoven, R. (2014). Sulfuric acid leaching of South African chromite: Part 2. Optimization of leaching conditions, International Journal of Mineral Processing 130: 102-114.

Li, X. B., Xu, W. B., Zhou, Q. S., Peng, Z. H., and. Liu, G. H. (2011). Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid, Journal of Central South University Technology, 18(2): 399-407

Liu, K., Chen, Q.Y., and Hu, H.P. (2009). Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore, Hydrometallurgy. 98, (3-4): 281- 294.

Michael, L., (2016). Gravity spiral concentrator working principle. Murtallurgit, 911: 17-25.

Mines, C. O. (2017). Minerals Council of South Africa Facts and Figures. 33-43

Murthy, R., Tripathy, S. K. & Kumar, R., 2011. Chrome ore beneficiation challenges & opportunities. Minerals Engineering, 2(1-2): 375-386

Pei-yang S., Cheng-jun L., Qing Z., and Hao-nan S. (2017). Study on mechanisms of different sulfuric acid leaching technologies of chromite, International Journal of Minerals Metallurgical and Materials 24(9): 983-990.

Qi, T. G., Liu, N., Li, X. B., Peng, Z. H., Liu, G. H., and Zhou, Q. S. (2011). Thermodynamics of chromite ore oxidative roasting process, Journal of Central South University Technology 18, (1): 83-93.

Qing Z., Chengjun L., Peiyang S., Lifeng S., Maofa J., Henrik S., and Ron Z. (2020). Cleaner Production of Chromium Oxide from Low Fe(II)-Chromite. Minerals. 10(460): 2-14

Sadrnezhaad, S.K. (2004). Kinetic Processes in Materials Engineering and Metallurgy, Amri Kabir Publication Organization, Tehran, 145- 153

Sampath, S., Sali, S. K., and Jayadevan, N.C., (1990). Thermochemical studies in the sodium–chromium–oxygen system, Thermochim Acta, 159: 327-336

Senol, A. (2004). Amine extraction of chromium (VI) from aqueous acidic solutions. Separation Purification Technology, 36, (1): 63-74.

Sun, Z., Zhang, Y., Zheng, S-L., Zhang Y. (2009). A new method of potassium chromate production from chromite and KOH–KNO3–H2O binary submolten salt system AIChE Journal, 55 (10): 2646-2656

Tripathy, S. K., Banerjee, P. & Suresh, N., 2015. Magnetic separation studies on ferruginious chromite fine to enhance Cr: Fe ratio. International Journal of Minerals, Metallurgy and Materials VoL.3, 217.

Vardar, E., Eric, R. H., and Letowski, F. K., (2004): Acid leaching of chromite, Minerials Engineering, 7( 5-6): 605-615.

Wilbur S. B., Abadin H., Fay M., Yu D., Tencza, B., Ingerman L., Klotzbach J., and James S. (2000). Toxicological Profile for Chromium, Agency for Toxic Substances and Disease Registry. Atlanta. 155-168.

Yarkadaş G. and Yildiz, K. (2009). Effects of mechanical activation on the soda roasting of chromite, Canadian Metallurgical. Quarterly 48, (1): 69-79

Yoshioka, T., Motoki, T., and Okuwaki, A. (2001). Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model, Industry Engineering Chemistry Resources 40 (1): 75.

Zhang, M. X., Jiang, C. L., Wei, . S.A., Tan, S.Y., and Dong L. C. (2014). Solubility equilibrium of the NaOH–H2O–Na2CrO4–Na2SiO3–NaAlO2 multicomponent systems involved in the liquid-phase oxidation of chromite. Industry Engineering Chemistry Resources 53(47): 18311-18321.

Zhang, Y., Zheng S., Du H., Xu H., Zheng Y (2010). Effect of mechanical activation on alkali leaching of chromite ore. Transaction of Nonferrous Metals Society of China, 20 (5): 888-891

Zhao, Q., Liu, C. J., Shi, P. Y., Zhang, B., Jiang T., Zhang, Q.S., Zevenhoven, R., and Saxén, H. (2015). Sulfuric acid leaching kinetics of South African chromite, International Journal of Mineral Processing 22(3): 233-244.

Zhao, Q., Liu, C. J., Shi, P. Y., Zhang, B., Jiang, M. F., Zhang, Q. S., Saxén, H., and Zevenhoven, R. (2014). Sulfuric acid leaching of South African chromite. Part 1: Study on leaching behavior, International Journal of Mineral Processing, 130: 95- 102.

Zhao, Q., Liu, C. J., Yang, D. P., Shi, P. Y., Jiang, M. F. Li, B. K., Saxén, H., and Zevenhoven, R. (2017). A cleaner method for preparation of chromium oxide from chromite, Process Safety Environmental Protection, 105: 91- 101

Published
2023-12-31