Direct Air Capture: Economy and Technical Cost of Low-Purity CO2 on Post-Capture Operating Cost

  • Luqman K. Abidoye Dept. of Civil Engineering,Osun State University
Keywords: Direct air capture; economy; compression; dissolution


Direct air capture has the potential to capture from innumerable random, mobile and immobile small-scale carbon-emission sources .    In this study, simulations results  of Direct Air Capture (DAC) reveal the  isentropic compression work increases as the mole fraction of CO2 decreases in the stream. At the same depth of sequestration, compression  power requirement increases by 20% to sequestrate 10% CO2 stream compared to pure CO2.  Also, sequestration at deeper geological layer further raises the power cost of the compression by  approximately  14% from 1000 to 1500m and by  almost 32% from 1500m to 2500m depth, for pure CO2. This increases  to around 34% for storage at 2500m with 50% CO2 mole fraction and 36% for 20% CO2 fraction at the same depth.  Similarly, the cost of cooling compressed CO2 increases in proportion to the reduction in CO2 mole fraction in  the gas stream. It was shown that the solution density increase with impurities as a result of falling pH in the presence of N2 and O2. 


Thonemann, N., Zacharopoulos, L., Fromme, F. and Nühlen, J., 2022. Environmental impacts of carbon capture and utilization by mineral carbonation: A systematic literature review and meta life cycle assessment. Journal of Cleaner Production, 332, p.130067.

Nedunuri, A.S.S.S., yar Mohammed, A. and Muhammad, S., 2021. Carbonation potential of concrete debris fines and its valorisation through mineral carbonation. Construction and Building Materials, 310, p.125162.

Simon, A., Kaahaaina, N., Julio Friedmann, S., Aines, R., 2011. Systems analysis and cost estimates for large scale capture of carbon dioxide from air. Energy Procedia 4, 2893e2900

Kong, F., Rim, G., Song, M., Rosu, C., Priyadarshini, P., Lively, R.P., Realff, M.J. and Jones, C.W., 2022. Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions. Korean Journal of Chemical Engineering, 39(1), pp.1-19.

Rim, G., Kong, F., Song, M., Rosu, C., Priyadarshini, P., Lively, R.P. and Jones, C.W., 2022. Sub-Ambient Temperature Direct Air Capture of CO2 using Amine-Impregnated MIL-101 (Cr) Enables Ambient Temperature CO2 Recovery. JACS Au, 2(2), pp.380-393.

Cooper, J., Dubey, L. and Hawkes, A., 2022. Life cycle assessment of negative emission technologies for effectiveness in carbon sequestration. Procedia CIRP, 105, pp.357-361.

International Energy Agency. CO2 Emissions From Fuel Combustion: Highights (IEA, 2013); see

Lange, L.C., Hills, C.D. and Poole, A.B., 1995. Preliminary investigation into the effects of carbonation on cement-solidified hazardous wastes. Environmental science & technology, 30(1), pp.25-30.

Ojifinni, R.A., Gong, J., Froemming, N.S., Flaherty, D.W., Pan, M., Henkelman, G. and Mullins, C.B., 2008. Carbonate formation and decomposition on atomic oxygen precovered Au (111). Journal of the American Chemical Society, 130(34), pp.11250-11251.

Ammendola, P., Raganati, F., Landi, E., Murri, A.N. and Miccio, F., 2021. Kinetics of the carbonation reaction of an SrO-Al2O3 composite for thermochemical energy storage. Chemical Engineering Journal, 420, p.129618.

Stokreef, S., Sadri, F., Stokreef, A. and Ghahreman, A., 2022. Mineral Carbonation of Ultramafic Tailings: A Review of Reaction Mechanisms and Kinetics, Industry Case Studies, and modelling. Cleaner Engineering and Technology, p.100491.

Molahid, V.L.M., Mohd Kusin, F., Syed Hasan, S.N.M., Ramli, N.A.A. and Abdullah, A.M., 2022. CO2 Sequestration through Mineral Carbonation: Effect of Different Parameters on Carbonation of Fe-Rich Mine Waste Materials. Processes, 10(2), p.432.

Madden, A.S. and Hochella Jr, M.F., 2005. A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles. Geochimica et Cosmochimica Acta, 69(2), pp.389-398.

Carolina Font-Palma * , David Cann and Chinonyelum Udemu, 2021. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. Journal of Carbon Research, 7, 58.

SUE SURKES, 2022. Israeli balloon tipped as world’s 1st affordable, scalable method for carbon capture

Fujikawa S, Selyanchyn R and Kunitake T, A new strategy for membrane-based direct air capture. Polym J (2020).

IPCC, Carbon Capture and Storage, Bert Metz, OgunladeDavidson, Heleen de Coninck, Manuela Loos and Leo Meyer(Eds.) Cambridge University Press, UK. pp 431. Available fromCambridge University Press, The Edinburgh BuildingShaftesbury Road, Cambridge CB2 2RU ENGLAND(2005)

Energy Technology Perspectives 2020, Special report on carbon capture utilisation and storage (CCUS in clean energy transitions),IEA(2020).

Breyer, C., Fasihi, M., Bajamundi, C. and Creutzig, F., 2021. Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule 3, 2053–2065.

Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP et al., CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68 (2007)

Brethomé, F.M., Williams, N.J., Seipp, C.A., Kidder, M.K. and Custelcean, R., 2018. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nature Energy, 3(7), pp.553-559.

Hansen, J., Sato, M., Kharecha, P., Von Schuckmann, K., Beerling, D.J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M.J., Rohling, E.J. and Shakun, J., 2017. Young people's burden: requirement of negative CO 2 emissions. Earth System Dynamics, 8(3), pp.577-616.

Keith, D. W.; Holmes, G.; Angelo, D. S.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573−1594.

Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Cleaner Prod. 2019, 224, 957−980.